

Stabilité physicochimique de la pipéracilline/tazobactam en seringue et en diffuseur portable pour une administration continue en service de soins critiques et à domicile

Contact: infostab@wanadoo.fr

LOEUILLE Guillaume¹, VIGNERON Jean^{1,4}, D'HUART Elise^{1,4}, CHARMILLON Alexandre², DEMORE Béatrice^{1,3,4}

Méthode : CLHP en phase inverse, avec un détecteur DAD à

210 nm [2], C18 LiCrospher® 12,5 cm, taille particule = 5 μm

Phase mobile gradient: KH₂PO₄(0.02M) / acétonitrile de

92,5/7,5 à 70/30 (v/v), ajusté pH 2,5 avec de l'acide

Linéarité, répétabilité et précision intermédiaire

Dégradation forcée : HCl 0,01M (2h + 40°C); NaOH 0,01 M

(10 min); UV (3h à 254 nm); thermique (2h à 75°C); H₂O₂

■ Débit : 1.5 mL/min Volume d'injection : 10 µL

Mesure pH (Bioblock Scientific pH meter)

VALIDATION MÉTHODE selon les ICH Q2R1

STABILITÉ CHIMIQUE et VALIDATION MÉTHODE

Linéarité: R² > 0,9999 (pipéracilline et tazobactam)

■Temps de rétention: 2,2 min (tazobactam) et 13,5

Répétabilité et précision intermédiaire : CV < 2%

Variation pH : variation de plus d'une unité de pH à

- 3. Université de Lorraine, EA 4360 APEMAC, Nancy, France,
- 1. Pharmacie, CHRU de Nancy, Allée du Morvan, 54511 Vandoeuvre-lès-Nancy, France 2. Équipe transversale d'infectiologie, CHRU de Nancy, Allée du Morvan, 54511 Vandoeuvre-lès-Nancy, France

STABILITÉ CHIMIQUE

orthophosphorique.

0.03% (2h + 40°C)

min (pipéracilline)

(pipéracilline et tazobactam)

4. Infostab, association à but non lucratif, 54180 Heillecourt, France

N° 21-82658

INTRODUCTION

- La pipéracilline/tazobactam est un antibiotique (combinaison d'une uréidopénicilline et d'un inhibiteur de B-lactamase).
- La posologie recommandée varie de 12/1,5 à 16/2 g/j pour les infections graves.
- Antibiotique temps-dépendant: une administration en continu permet une meilleure efficacité thérapeutique.
- Son intérêt à l'hôpital repose sur son très large spectre, étant actif sur des bactéries à Gram + et à Gram -.
- Des données de stabilité existent (en seringue et en diffuseur), toutefois ces études présentent le plus souvent un niveau de preuve peu élevé.

OBJECTIFS

Étudier la stabilité physicochimique de la pipéracilline/tazobactam.

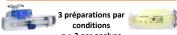
		6 g/0,75 g dans	20-25 °C	
		48 mL		
Pousse seringue électrique	NaCl 0,9%	Soit 125/15,62 mg/mL	÷	T 0h, 8h,
	et G5%	16 g/2 g dans	37 °C	24h, 48h
No 1914		240 mL	- 	
Diffuspur (1)		Soit 66.67/8.33 ma/mL	/T\	

(1) Diffuseur élastomérique en polyisoprène Baxter Infusor® LV10

DISCUSSION

- 1ere étude à notre connaissance à retrouver une augmentation de plus d'une unité pH pour les diffuseurs dilués avec du NaCl 0,9% conservé à 37°C.
- L' Z de l'absorbance à 350 nm observées dans toutes les conditions est sans doute due à un **produit de dégradation**, probablement le n°6 (analyse spectrale)
- Le tazobactam est bien plus stable chimiquement que la pipéracilline, en particulier avec l'exposition à la chaleur.
- Impossible de réaliser une seringue de 48 mL, à 12 ou 16 g de pipéracilline en raison d'un trop grand volume de reconstitution nécessaire (la poudre se dissout très difficilement).

CONCLUSION


	NaCl 0,9% Ou G5%	6 g/0,75 g dans 48 mL Soit 125/15,62 mg/mL	20-25 ℃ - ` —	Stable 48 h
- 	G5%	16 g/2 g dans 240 mL Soit 66.67/8.33 mg/mL	37 °C	Stable 24 h

MATÉRIEL ET MÉTHODES

SCHÉMA DE L'ETUDE

Critères de stabilité:

- ± 10% de la concentration initiale (90-110%) pipéracilline et tazobactam
- Ø changement significatif: visuel et subvisuel Variation max pH: 1 unité

n = 3 par analyse

STABILITÉ PHYSIQUE

Inspection visuelle :

- > Recherche d'un changement de couleur, formation d'un précipité ou de gaz.
- ■Inspection subvisuelle:
- > Comptage particulaire (PAMAS SVSS)
- > Mesure de la turbidimétrie par un spectrophotomètre à 350, 450 et 550 nm (Safas Monaco UV m2)

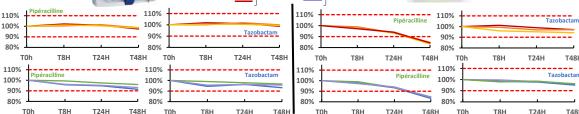
ICH: International conference on harmonisation. CLHP: Chromatographie liquide haute performance. [2] Conor et al;ejhpharm-2020-002340

RÉSULTATS

STABILITÉ PHYSIQUE

Inspection visuelle:


(!)


T48 H

Aucun changement visuel détecté en seringue et en diffuseur

Inspection subvisuelle:

- ➤ Pas de changement significatif à 410 et 550 nm
- ➤ NaCl 0,9%/G5% : ¬ progressive de l'absorbance à 350 nm en seringue et en diffuseur
- ■Comptage particulaire → conforme au test ✓

