

Compounding of an oral suspension of clonidine hydrochloride 20 µg/mL for neonatal patients using tablets & a self-contained wet-milling technology

Joe B. D'Silva, B. Pharm., Ph.D.¹, William L. Boyko, Pharm.D., R.Ph.¹, Edmund J. Elder, Ph.D., R.Ph.², Michael Pugacz, Pharm.D., R.Ph.³, Tina M. Wise, B.S., R.Ph.³ ¹P&C Pharma, ²Zeeh Pharmaceutical Experiment Station, School of Pharmacy, University of Wisconsin-Madison, ³ Department of Pharmacy, Akron Children's Hospital

Introduction

- For the pediatric population, oral liquids are commonly compounded from tablets using a mortar and pestle to manually grind the solids into particles of an appropriate size, prior to incorporating them into liquids
- A new automated wet-milling technology enables compounding to be performed within a self-contained singleuse multipurpose plastic container. [Figure 1]
- The specialized container compounds, stores and dispenses the oral liquid with no required product transfers. All the compounding is undertaken within an enclosed environment with no loss of medication.
- · The novel wet-milling process provides enhanced product physical features leading to accurate and precise dose
- A study was undertaken using clonidine hydrochloride tablets to demonstrate the efficiency of the compounding process in formulating a low concentration formula for neonates with the required physical-chemical features and the resultant benefits for pharmacists and patients.

Methods

- Clonidine hydrochloride tablets were compounded into 20 ug/ml oral suspension preparations.
- · The requisite number of tablets and specified quantity of water were placed into the specialized plastic containers.
- The containers were capped and placed inside the sealed. holders within the milling unit [Figure 2].
- The specially textured container surface combined with a high RPM planetary motion from the machine results in a wet milling process that converts the contents into a fine uniform suspension, [Figure 3]
- The required amount of simple syrup was added and the product mixed by shaking. [Figure 4]
- · Following compounding, the container serves the roles of storage and dispensing of the compounded product.
- · Dose uniformity and chemical stability studies were undertaken using HPLC methods.

Equipment and Materials

Figure 1: Enclosed wet milling device that produces uniform particles leading to palatable high-quality liquid formulas with the required dose uniformity

Figure 2: Milling unit closed and opened showing containers in place

Figure 3: Mechanism of the wet milling process in the specialized plastic container

Compounding of 20 µg/ml clonidine hydrochloride suspension

Figure 4: Compounding process for oral liquids using specialized plastic containers

Results & Discussion

- The compounded formulas possess a smooth texture and the required characteristics for proper dose withdrawal.
- . The dose uniformity results were within 1% of the label
- A beyond use date (BUD) of 1 month at room temperature was assigned to the compounded product. [Table 2 and
- . The stability study results were within 5% of the label claim.

Table 1: Dose Uniformity Results for 20 µg/ml clonidine HCL suspension

Aliquot 1	20.2 (101% LC)
Aliquot 2	20.3 (102% LC)
Aliquot 3	20.0 (100% LC)
Average	20.2 (101% LC)
%RSD	0.84%

Figure 6: Stability data for 20 μg/ml clonidine HCl suspension

Conclusions

- · The data demonstrate the effectiveness of the self-contained wet-milling technology to compound low-concentration homogenous suspensions that contain the entire dose.
- The wet-milling process results in excellent dose uniformity. · Automation eliminates the variability introduced by manual
- The employment of a single-use disposable container for
- compounding, storage, and administration eliminates the need for cleaning and the risk of cross contamination.
- Use of a fully-enclosed compounding environment with added safeguards eliminates the potential exposure of personnel to aerosolized powders.

Disclosures

Authors of this presentation have the following to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation

- . Joe B. D'Silva: Chief Scientific Officer and CEO, P&C Pharma
- William L. Boyko: Consultant Pharmacist. P&C Pharma
- . Edmund J. Elder: Member of the 2015-2020 USP Compounding Expert
- · Michael Pugacz: Nothing to disclose
- Tina M. Wise: Nothing to disclose

Acknowledgements

We would like to thank the following for their individual contributions

· Karen Jones, University of Wisconsin - Madison

References

- National Center for Biotechnology Information. Publishme Compound Databases: CID-2803. June 2017. https://publishme.inlin.niln.gov/compound/2803-Interpol/publishme.inlin.niln.gov/compound/2803-National Center for Biotechnology Information. Publishme Compound Databases: (CID-28073). Publishme.interpolycom/280179-briggland: Clondine (DI000573). Web. June 2017. http://www.stafiic.neufs/aerds.chdm/20050759-TRII Itt. p.: Searchide COS database. Web. 2017. http://www.stafiic.neufs/aerds.chdm/ United States Phism.coopial/National Formulary, Reference Tables: Description and Solubility, Rickville MO. USP 404-87 July 2017.
- The Orange Book. July 2017. https://www.accessdata.fda.gov/scripts/cder/ob/search_product.cfm Braga, M. A., M. F. Martini, M. Pickholz, F. Yokiatchiya, M. K. Franco, L. F. Cabeca, V. A. Guilherme, C. M. Silva, C. E. Limia, and E. De Paula. "Confiding Complexation With Hydroxypropyl-Beta-Cyclodextrin: Fro Physico-Chemical Characterization to In-Vivo Adjuvant Effect in Local Anesthesia." Journal of Pharmaceutical and Biomedical Analysis. 119 (2016): 27-36. July 2017.
- Tris Pharma Inc. Package Insert for Clonidine Oral Suspension. July 2017.
- https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022499lbl.pdf
 Tris Pharm Inc. NDA Submission. "The Chemistry Review for NDA 22-499." Web. July 2017.

- 2011.
 3011.
 3014.
 See W.R.K., S.H. Winson, S.C. Erush, E. Amiri. Extemporaneous Formulations for Pediatric, Geriatric, and Special Needs Patients. 3rd ed. Betheeds, M.Dr. ASHP Publications, 2016.
 10. United States Pharmacopela/National Formulary, Rockellle, MO.
 USP40-M135 Page 3510.
 Web. July 2017.
- Fontida BioPharm Inc. Package Insert for Clonidine HCl Tablets. Web. July 2017. https://www.drugs.com/pro/clonidine.html