

STABILITY OF 50 AND 100 μ G/0.1ML INTRAOCULAR SOLUTIONS OF VORICONAZOLE AT 2-8 $^{\circ}$ C

M.ROCHE¹, N.SIMON^{1,2}, F.BOURDON¹, C.DHORNE¹, C.BERNERON¹, D.LANNOY², P.ODOU^{1,2}

Contact: marine.roche@etu.univ-lille2.fr

- ¹ Centre Hospitalier Régional Universitaire, Pharmacie, Lille, France
- ² Université Lille 2, EA 7365-GRITA-Groupe de Recherche sur les formes injectables et les Technologies Associées, Lille, France

Background

Voriconazole is a triazole antifungal agent effective on most keratitis causative fungi.

Off-label use of extemporaneously compounded intraocular (intrastromal (IS), intracameral (IC))

Voriconazole has shown promising results in deep fungal ophthalmic infections and abscessed, recurrent or drug-resistant eye infections¹.

Stability studies on Voriconazole intraocular solutions (VIS) are lacking.

T System of the state of the st

Purpose

LG: lacrymal gland, T: Topical, IVI: Intra vitreal, SR: Sub retinal and Sys: Systemic

To assess the stability of 50 and 100µg/0.1mL VIS stored in 3 part syringes at 2-8°C

Material and Methods

Voriconazole concentration was assessed using a stability-indicating HPLC-UV Diode-Array-Detector method (Ultimate 3000® Thermo Scientific, France). Non visible particle count was performed using light obscuration particle count test (APSS-2000, Particle measuring systems, Boulder, USA) in regards to the European Pharmacopoeia 2.9.19 monography.

Statistical analysis were led using a Mann and Whitney's non parametric tests (α <5%). Degradation rates were compared with a Student's T test.

Compounding of Voriconazole intraocular solutions

Stability study led according to the GERPAC-SFPC stability studies guidelines

Two batches of VIS (2mL) were aseptically compounded and **stored at 2-8°C** in 3mL 3 part syringes (ref 002022420, Pentaferte, Villeparisis, France).

D0 D1 D3 D6 D10 D13 D30 D44

At each time point:

- Visual aspect
- •And Voriconazole relative concentration (% of initial concentration)
- •pH
- Osmolality

At D0 and D13:

•Non-visible particles count for particle size ≥10µm and ≥25µm (Eur Pharm 2.9.19 threshold: 6000 and 600 particles/recipient respectively)

NO CONCENTRATION EFFECT

Sterility assay

Results

	D0 50μg/0.1mL	D13 50μg/0.1mL	D44 50μg/0.1mL	D0 100μg/0.1mL	D13 100μg/0.1mL	D44 100μg/0.1mL
Osmolality (mOsm/kg)	281.2	281.7	282.2	298.2	299.8	299.8
рН	6.78	6.86	7.11	6.64	6.88	7.09
Particles >10µm (particle/syringe)	240.3	339.07	Not measured	363.2	487.6	Not measured
Particles>25µm (particle/syringe)	3.3	4.4	Not measured	5.2	6.9	Not measured

Discussion

Considering every time point, confidence intervals for relative concentration are:

-For 50μg/0.1mL :]0.993;+ω[-For 100μg/0.1mL :]0.951;+ω[

Relative concentration remained superior to 95% (p<0.0001)

No difference was shown in degradation rates between the two concentrations (p=0.497)

 $-50 \mu g/0.1 mL: 0.008 \pm 0.120 \\ -100 \mu g/0.1 mL: -0.231 \pm 0.961$

About Voriconazole degradation products (toxicity unknown), areas increased by maximum 1.3 (D13) and 2 (D44), remaining unquantifiable. Sterility was preserved for at least D13 with no change in visual aspect

Osmolality remained stable for both concentrations for 44 days (p=0.490) and pH slightly increased (p=0.150)v

VIS remained stable for at least 13 days, based on sterility assays and non visible particles count.

Conclusion

Voriconazole intraocular solutions remained stable for thirteen days at 2-8°C. We advise a shelf life of maximum thirteen days for both Voriconazole intraocular solutions kept at 2-8°C

¹ Sharma N. et al. Evaluation of intrastromal voriconazole injection in recalcitrant deep fungal keratitis: case series. Br J Ophthalmol (2011); 95(12):1735-7.